요 약

본 연구는 임측기류와 인체순응을 고려하여 개발된 에어컨의 폐적기류를 평가하기 위해 기존 에어컨에 활용되었고 있는 정속풍, 변동풍과 새로운 개념을 적용하고 있는 개발폰을 비교하고자 수행하였다. 20명의 남녀 피험자를 대상으로 심전도를 측정하고 HRV 분석을 실시하여 남녀별로 비교한 결과 남녀 모두 개발폰, 변동풍, 정속풍의 순서로 HF/LF 값이 높게 나타났으며, 여성의 경우 정속풍은 무작위 조건에서보다 낮은 HF/LF 값을 나타내었다. 그리고 무작위에 대해서는 여성의 경우보다 남성의 경우가 변동풍과 개발폰의 기류에 따라 조건에서 크게 반응하였다. 남녀 모두를 평균한 기류파極별 비교분석에서는 개발폰에서 가장 높은 HF/LF 값을 보였으며, 변동풍과 정속풍이 정속풍에 대하여 유의한 차이를 나타내었 다. 개인별로 각 자극에 대한 HF/LF 값을 계산하여 각 조건의 보하 변수로 도출한 결과, 14명이 개발폰에서 가장 높은 HF/LF 값을 나타내었고, 6명의 피험자는 변동풍에서 가장 높은 HF/LF 값을 보였다.

본 연구의 결과 새로운 개발된 개발폰이 기존의 정속풍이나 변동풍에 대하여 더욱 폐적한 기류임을 알 수 있었다.

서 론

최근 주택을 비롯하여 일반 건물에 대한 요구가 향상 다양화, 고급화됨에 따라 에어컨 소비가 적어지면서도 쾌적한 거주공간을 구현할 수 있는 에어컨의 개발이 강하게 요구되고 있다. 이와 같은 요구에 부응하기 위한 에어컨을 개발하기 위해서는 우선 어떤 온열환경이 거주자에게 가장 적합한가를 정확히 합리화 필요가 있다.

인체의 온열 폐적감에 영향을 미치는 요소들은 온도, 기류, 습도가 있으며 찰의량, 대사량 등도 영향을 준다. 인간은 이와 같은 온열환경요소를 개별적으로 구별하여 온도만으로 볼거나 덜나다는 음으로 간주할 수는 없기 때문에, 이는 몇몇 온열환경요소를 고려하여 온도만으로 볼거나 덜나다는 음으로 간주할 수는 없기 때문에. 따라서 온열환경에서 발생하는 감각량의 변화를 물리적으로 변환하여 측정하여야 하고, 그 측정량을 제어하거나
조정하여 인간이 느끼는 쾌적 범위를 도출하여야 한다. 그러므로 음열환경에 대한 음열적적 평가를 위해서는 피부온도와 체온의 변화, 주관적 실실평가 뿐만 아니라 인체의 생리적인 정보를 이용한 복합적인 평가가 필요하다. 따라서 최근 심전도 신흥로 이용한 HRV 분석방법으로 인체의 감성변화를 감안하고자 하는 연구가 진행되고 있다.

교감신경계를 자극하면 기관지와 동공이 확장되고, 혈관이 수축하여 위장계가 억제되고, 혈압과 심장의 고동소리 그리고 심장음이 증가하고 암의 분비가 늘어난다. 교감신경의 빠르고 산란한 활동과는 대조적으로 부교감신경계는 신체의 안정성을 유지하고 복부시키기 위해 작용하며, 부교감신경계를 자극하면 심장박동과 혈압이 감소하고, 기관지와 동공이 수축하고, 소화기능이 증진된다. 이러한 교감신경계와 부교감신경계는 매우 밀접한 상호작용을 하므로 어떤 주어진 신체변화가 교감신경계 활동 때문인지 아니면 부교감신경계 활동으로 인해 발생하는지를 결정하기가 어렵다. 예를 들면 동공의 확장은 교감신경계 활동에서의 증가 때문일 수도 있고, 혹은 부교감신경계 활동의 감소 때문일 수도 있고, 아니면 두 신경계가 모두 활동하여 나타난 수도 있다. 최근의 연구사례를 보면 강한 스트레스를 수반한 조건이 아니더라도, 부교감신경계가 심장박동의 증가와 감소를 배제한다고 알려져 있다.

심장의 박동은 혈압이나 호흡 그리고 체온과 같은 변수들처럼 외부의 영향에 대응하여 체내의 안정성을 유지하고자 자극적으로 변화하는 데는 자율신경계의 통제에 의한다. 이와 같은 심박의 변화 정도를 심박변이도(HRV, heart rate variability)라 한다. 심박변이도는 심혈관계 조절 시스템, 자율신경계 기능을 연구하는 유용한 지표이며, 이것의 분석 방법으로서 가장 정확성 및 신뢰성 높은 것이 스펙트럼 분석법으로 알려져 있다.

심박변이도의 스펙트럼 분석을 적용하면 교주파(HF, high frequency), 저주파(LF, low frequency)의 성립 값을 연출 수 있다. 일반적으로 0.15~0.50Hz 범위의 고주파 대역은 0.35Hz를 중심으로 최고치를 보이며 호흡변도와 연관되어 있다. 고주파 대역의 심박변이도는 주로 심장 미주신경(부교감신경)의 활동에 기인하며, 0.04~0.15Hz 범위의 저주파 대역은 심장 미주신경 및 교감신경 활동의 영향을 받고, 주로 교감신경성 혈관 긴장도 변화에 기인한다.

인간의 음열적적 평가에는 영향을 미치는 음열환경 요소들 중 특히 기류는 동일한 음도영역에서 수도가 증가할수록 인체로부터 열을 많이 배출할 뿐 아니라, 인체와 접촉을 통해 직접 인체에 낭각효과를 발생시킨다. 또한 음열환경요소인 습도 및 복사열을 이용해 사회적 영향을 얻는 것보다 낭각효과는 크고, 인공적으로 기류를 발생시키는 방법은 단단하므로 쾌적영역을 확장시키기 위한 제어에 용이하다.

본 연구는 기류의 쾌적성 평가를 바탕으로, 습식시나 방식시를 이용하여 기류 변화를 동일한 쾌적환경 제시를 위해 개발된 에어컨의 새로운 기류제어 방식을 기존 에어컨에 적용하고 있던 기류제어 방식과 비교하고자 하였다.

실험 방법

본 연구는 음도, 습도 및 기류를 제어하기 위해 음열환경 실험실을 만들어 실험을 실시하였다. 실험실은 4.1m×4.9m×2.7m의 크기이며 모든 벽과 천장, 바닥은 충분히 단열을 하여 벽면이 음도와 실내공기 온도가 거의 같도록 하였다. 임의의 기류를 발생시키기 위한 기류발생기는 기존 에어컨을 사용하였으며, 온도, 습도는 항온항습기를 이용하여 조절하였다. 피험자는 기류발생장치로부터 3m 떨어진 위치에 정착하여 실험이나 독서를 할 수 있도록 하였으며, 실험실 개방도가 그림 1에 나타난다.

그림 1. 실험실 개방도
표 1. 피험자의 신체적 특성

<table>
<thead>
<tr>
<th>성별</th>
<th>인원</th>
<th>나이</th>
<th>신장 [cm]</th>
<th>체중 [kg]</th>
<th>표면적 [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>여자</td>
<td>12</td>
<td>23.5</td>
<td>±1.2</td>
<td>158.9</td>
<td>±0.41</td>
</tr>
<tr>
<td>남자</td>
<td>12</td>
<td>26.4</td>
<td>±0.7</td>
<td>172.5</td>
<td>±0.72</td>
</tr>
</tbody>
</table>

여비심혈 및 사전교육을 통해 신체적 질환이 없는 건강한 12명의 남녀 대학생 24명이 실험에 참가하였으며, 피험자의 신체적 특성이 표 1에 포함되어 있다. 실험자는 피험자의 체중과 신장이 평균±1.5cm, ±0.41kg로 균일하며, 성별에 따라 체중과 신장이 다르게 나열된다. 실험 중 대사량은 심장과 호흡의 변화를 모니터링하며, 실험 중 대사량은 의사와 담사 및 간병인, 대화, 설문을 하고 있으므로 기존 연구자료에 비교하여 1.1 m/sec로 가정하였다.

실험에 이용된 기기는 상하완성 가이드를 고정하여 일정기류를 제공하는 기류변화 가 없는 정면형상하완경 가이드를 일정하게 상하로 변동시켜 기류변화를 주는 변동형, 그리고 상하완성 가이드의 변동 속도를 상방시각화환기에 다르게 제시하여 기류의 변화가 많은 개방형이 이용되었다.

실험진행은 2인 1조가 되어 외부노도 조건에서 30분간 대기한 뒤에, 26°C/50%로 일정하게 놓여 있는 실험실로 일정하여 에어컨 전방 3m 지점에서 실험을 실시하였고, 피험자 위치에서의 기류는 0.25m/sec가 되도록 하였다. 각각의 기류는 20분씩 제공하였으며, 각 기류조건 사이에는 5분의 시간 간격을 주었다.

심전도 측정은 자극제시 전에 대한 자극제시 후의 생리신호변화를 관찰하기 위해 전환조건과 각 기류조건에서 2분 동안 콘디 그레프 장비를 통해 실시하였다. 심전도는 0.5mV/div의 감도를 가도록 측정하였고, 80Hz의 저항형과 아날로그 필터를 적용하였으며, 시험수는 0.3ms로 설정하였다. 측정된 심전도 신호는 5Hz로 샘플링 되었고, A/D(DDT-3001)변환기를 통해 분석용 컴퓨터에 저장하였다. 심전도 측정법은 표준 전극 유도법으로 철저한 향해 값을 구한 기기를 가장 크게 나타낼 수 있는 LeadⅡ전극부착법을 사용하였고, 전극은 표면전극인 Ag/AgCl 전극을 사용하여 측정하였다.

데이터 분석

HRV분석에 있어서의 R-R 간격의 정확한 측정은 주파수 스펙트럼 분석어서 매우 중요하며, 작은 오차에도 민감하다. R-R 간격의 정확한 측정에 방해가 되는 것은 측정 노이즈, 근전도에 의한 노이즈, 전극의 움직임에 기인한 노이즈의 세 가지 요인이 주를 이룬다. 따라서, 미국심장학회에서는 500Hz 이상의 샘플링 주파수로 기록된 심전도로부터 R-peak을 검출하는 것을 추천하고 있다.

본 실험을 통해 측정된 심전도 신호의 R-peak 검출은 Berger가 제안한 피크검출 알고리즘을 이용하였다. 심전도 데이터로부터 호흡과 피험자의 움직임에 의한 심전도 기저선(baseline)의 움직임을 고려할 수 있는 1Hz이하의 성분과 전극이 위치해 있는 곳에서의 근전도 등의 방해를 제거하기 위해 통과 نطاق이 1 ～ 80Hz인 디지털 탁도들과 필터를 이용하여 신호를 향업하려고 필터의 계수는 200으로 정하였으며, 검출된 피크를 이용하여 우선한 시점의 R-peak과 다음 시점의 R-peak 간의 시간 간격을 구하였다. 그림 2에 HRV 분석과정을 도시하였다.

![심전도 신호](image1)

(a) 심전도 신호

![HRV 신호](image2)

(b) HRV 신호

![HRV 스펙트럼](image3)

(c) HRV 스펙트럼

그림 2. HRV 분석과정

- 138 -
이로부터 얻어진 시간간격의 이벤트 시리즈를 동시간 간격으로 새로운 시간축에 재배열하여 HRV 데이터를 구성하였다. 이 때 2분 동안의 R-peak의 수에 보간법을 이용하여 샘플링 주파수를 10배 증가시켰다. 이렇게 얻어진 HRV 평행적으로부터 파워스펙트럼분석을 통하여 최종적인 HRV 스펙트럼을 구성하였다. 그리고 개개인 피험자의 특성 값을 고려하기 위하여 자극 전 측정값에 대한 HF/LF 값과 자극 후 측정값에 대한 HF/LF 값의 변화를 비교하는 방법으로 정규화 하였다.

결과 및 도의

HRV 분석결과 노이즈로 인해 파생분석이 불가능한 여자 4명을 제외한 남자 12명과 여자 8명의 데이터를 이용하였다. 남녀별로 HRV 분석을 통해 나타난 정규화된 HF/LF 값을 비교한 결과를 그림 3에 나타내었다. 남녀 모두 개발품, 변동품, 정숙품의 순서로 HF/LF 값이 높게 나타났으며, 여성의 경우 정숙품은 무지극적으로 낮은 HF/LF 값을 나타내었으며, 여성의 경우 보다 남성의 경우가 무지극에 대하여 변동품과 개발품에서 크게 반응하였다. 여성의 경우는 정숙품과 변동품 기류조건에서 유의미한 차이를 나타내었으며, 남성의 경우에는 정숙품과 변동품 기류조건에서 유의미한 차이를 나타내었다. 이는 여성의 경우, 일정하고 강한 기류조건은 선호하지 않으며, 남녀 모두 일정한 기류보다는 기류의 변화가 있는 조건은 선호한다고 생각할 수 있다. 남녀모두를 평균한 기류계간 비교분석 결과를 그림 4에 나타내었다. 그 결과 개발품에서 가장 낮은 HF/LF 값을 보였으며, 개발품과 변동품은 정숙품에 대하여 유의미한 차이를 나타내었다. 이것은 일정한 기류와 변화하는 기류는 기류 폐적성 측면에 있어 분명한 차이가 있음을 나타내고 있다.

총 20명의 피험자들의 각 자극에 대한 HRV 분석결과를 종합한 결과 피험자의 70%가 세 가지 기류 중에서 개발품에서 HF/LF 값이 가장 높게 나타났고, 피험자의 80%가 정숙품 기류조건에서 HF/LF가 가장 낮게 나타났다. 이 결과에서도 일정한 기류인 정숙품과 변화가 많은 기류인 개발품에 대해 느끼는 기류패작성의 차이가 분명함을 알 수 있었다.

[그림 3. 남녀별 비교분석 결과]

[그림 4. 기류계간별 분석결과]

결론

HRV 분석을 통하여 기류조건에 따른 인체의 기류패작성 평가를 실시한 결과 기류의 변화가 많은 개발품과 변동품의 기류조건이 기류변화가 없는 정숙품의 기류조건에 비하여 HF/LF 값이 크게 나타났으며, 유의한 차이를 나타내었다. HF/LF 값의 값이 교감신경과 부교감신경의 활동을 반영한다고 볼 때 HF/LF 값의 상승은 부교감신경계의 활동이 더욱 우세함을 보여주기 때문에 개발품과 변동품은 정숙품에 비하여 폐적한 기류조건으로 나타났다. 실험결과를 통해 기류변화가 인체의 폐적장에 영향을 미치고 있음을 알 수 있었다. 따라서 에어컨의 동작에서 기류의 변동을 이용하면 에너지 절약효과 뿐만 아니라, 폐적건을 향상시키기 위한 큰 도움을 줄 수 있다. 그리고 생리신호 측정을 통한 HRV 분석을 이용하면 기류변화, 기류조건에 따른 인체의 폐적성을 평가하는데 있어 객관적인 지표로 이용될 것이라고 생각한다. 향후 기류요소를 포함한 운동패작성에
영향을 주는 다른 요소들에 대한 평가가 정량화 된다면, 인간에게 평가를 주는 최적의 운영환경을 구현하는데 큰 기여를 할 수 있을 것이다.

참고 문헌